Breve descripción de la actividad investigadora:

El Laboratorio de MicroTech está compuesto por una catedrática (J. Casals-Terré) y dos profesores contratados doctores (J.A. Lopez y J. Farré Lladós) realizamos investigación aplicada sobre las ventajas del uso de sistemas microfluídicos en áreas como la creación de dispositivos portátiles para el diagnóstico, mejora de la tribología mediante soluciones micro tribológicas y el diseño de sistema MEMS-RF. Nuestras líneas de investigación utilizan herramientas para conocer los principios físicos de los diferentes problemas como la caracterización de los sistemas microfluídicos mediante micro-particle image velocimetry, la simulación de fluidos y sistemas porosos. El laboratorio tiene capacidad para fabricar y validar prototipos, tanto sistemas porosos como sistemas microfluídicos con diferentes tecnologías (soft-lithography, laser- cutting, inkjet printing, 3D printing).

Media: microtech.upc.edu
Instagram: https://www.instagram.com/microtech.upc/

Artículos en los últimos 5 años:

[1] Mehrdel P, Karimi S, Farré-Llados J and Casals-Terré J. (2020) Portable 3D-printed sensor to measure ionic strength and pH in buffered and non-buffered solutions. Food Chemistry. Accepted
[2] Karimi S., Mehrdel P., Casals-Terré J. and Farré-Llados J.(2020) Cost-effective microfabrication of sub-micron-depth channels by femto-laser anti-stiction texturing. Biofabrication 12 025021
[3] Casals-Terré J., Farré-Llados J. López J.A., Vidal T., Roncero M.B. (2020) Enhanced fully cellulose based forward and reverse blood typing assay. Journal of Biomedical Materials Research Part B: Applied Biomaterials., 108(2), 439‐ 450.
[4] Ollé, E.P.; Farré-Lladós, J.; Casals-Terré, J. (2020) Advancements in Microfabricated Gas Sensors and Microanalytical Tools for the Sensitive and Selective Detection of Odors. Sensors, 20, 5478.
[5] Karimi, S.; Farré-Lladós, J.; Mir, E.; Escolar, G.; Casals-Terré, J. Hemostasis-On-a-Chip: Impedance Spectroscopy Meets Microfluidics for Hemostasis Evaluation. Micromachines, 10, 534.
[6] Casals‐Terré, J., Farré‐Lladós, J., Zuñiga, A., Roncero, M. B., & Vidal, T. (2019). Novel applications of nonwood cellulose for blood typing assays. Journal of Biomedical Materials Research Part B: Applied Biomaterials., 107(5), 1533‐ 1541.
[7] Karimi S., Mehrdel P., Farré-Llados J and Casals-Terré J. (2019) A passive portable microfluidic blood–plasma separator for simultaneous determination of direct and indirect ABO/Rh blood typing. Lab Chip, 19, 3249-3260
[8] Mehrdel, P.; Karimi, S.; Farré-Lladós, J.; Casals-Terré, J. (2018) Novel Variable Radius Spiral–Shaped Micromixer: From Numerical Analysis to Experimental Validation. Micromachines, 9, 552.
[9] Westerberg, L.-G.; Farré-Lladós, J.; Sarkar, C.; Casals-Terré, J. (2018) Contaminant Particle Motion in Lubricating Grease Flow: A Computational Fluid Dynamics Approach. Lubricants, 6, 10. Cuartil Q1 scimago rank. Factor impacto 0.71

[10] Casals‐Terré, J., Farré‐Lladós, J., Zuñiga, A., Roncero, M. B., & Vidal, T.(2017) REPlicating RAPid microfluidics: self-replicating printer for hydrophobic pattern deposition 3D printing and Additive manufacturing 4(4) 231-238
[11] Casals-Terré, J., Pradell, L. et al. (2017) RF-MEMS switches for a full control of the propagating modes in uniplanar microwave circuits and their application to reconfigurable multimodal microwave filters. Microsyst Technol 23, 5959–5975
[12] Farré-Lladós J., Westerberg L. G., Casals-Terré J. (2017), New method for lubricating wind turbine pitch gears using embedded micro-nozzles. J. Mech. Sci. & Tech. 31, 2, pp. 797-806.
[13] Casals-Terré, J. (2016) Eds: Microfluidic chip-capillary electrophoresis devices. Analytical and bioanalytical chemistry 408 (8) pp.1989-1991.
[14] Mohammadi M., Zare M.J., Madadi H., Sellarès J. Casals-Terré J. (2016) A new approach to design an efficient micropost array for enhanced direct-current insulator-based dielectrophoretic trapping. Analytical and bionalytical chemistry 408 (19) pp.5285-5294
[15] Farré-Lladós J., Casals-Terré J., Westerberg L. G., Voltas J. (2016). The use of Rapid Prototyping techniques (RPT) to manufacture micro channels suitable for high operation pressures and µPIV, Rapid Prot. J. 22, 1.